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��� � �������� �� � � � ��� � �������� � 	,
which contradicts (20). Therefore, 	 � �, i.e., (16) holds, implying that
(3) is satisfied.

APPENDIX B
PROOF OF THEOREM 2

The proof is similar to that of Theorem 1. Let 
, �, �, and � be as
defined in Appendix A. Then, due to (8), (18), (4), and Lemma 1, we
have ������ � �
� �	 �� � �
 � � and �� � �
� �	. From Lemma
3, 
����� � ������ � 	 for some 	 � �. To show that 	 � �, as-
sume to the contrary that 	 � � and let � be as defined in Appendix A.
Then, (20) holds for some �� � . It follows from the proof of Lemma
3 that ���������� � �������� � ��� � � �������� � ���������������� �
��� � � ���� � ����� ������ � � �� � �� 
 � �
 � ����. Thus,
����������������� � �������� � ��
� �
 � ����. This, along with
(19) and the fact that� � , implies ��������������� � �����������
������� �������� �� � �� �
� � � ��� 
 ��. Then, using the
same idea as in Appendix A, it can be shown that ������ ������� �
������ ������� � ��� � ��������. This leads to � ������� � 	,
which contradicts (20). Therefore, (16) and (3) hold.
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[9] A. Nedić and A. Ozdaglar, “On the rate of convergence of distributed
subgradient methods for multi-agent optimization,” in Proc. IEEE
Conf. Decision Control, New Orleans, LA, 2007, pp. 4711–4716.
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[13] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed
subgradient methods and quantization effects,” in Proc. IEEE Conf.
Decision Control, Cancun, Mexico, 2008, pp. 4177–4184.
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Augmented Lagrangian Approach to Design of
Structured Optimal State Feedback Gains

Fu Lin, Makan Fardad, and Mihailo R. Jovanović

Abstract—We consider the design of optimal state feedback gains subject
to structural constraints on the distributed controllers. These constraints
are in the form of sparsity requirements for the feedback matrix, implying
that each controller has access to information from only a limited number
of subsystems. The minimizer of this constrained optimal control problem
is sought using the augmented Lagrangian method. Notably, this approach
does not require a stabilizing structured gain to initialize the optimization
algorithm. Motivated by the structure of the necessary conditions for op-
timality of the augmented Lagrangian, we develop an alternating descent
method to determine the structured optimal gain. We also utilize the sensi-
tivity interpretation of the Lagrange multiplier to identify favorable com-
munication architectures for structured optimal design. Examples are pro-
vided to illustrate the effectiveness of the developed method.

Index Terms—Augmented Lagrangian, optimal distributed design,
sparse matrices, structured feedback gains.

I. INTRODUCTION

The design of distributed controllers for interconnected systems has
received considerable attention in recent years [1]–[13]. For linear
spatially invariant plants, it was shown in [1] that optimal controllers
are themselves spatially invariant. Furthermore, for optimal distributed
problems with quadratic performance indices the dependence of a
controller on information coming from other parts of the system de-
cays exponentially as one moves away from that controller [1]. These
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developments motivate the search for inherently localized controllers
that communicate only to a subset of other controllers.

The main focus of this work is to search for an optimal distributed
controller that is a static gain with a priori assigned structural con-
straints. The localized architectural requirements are formulated using
matrix sparsity constraints. For example, for banded feedback gains,
which are non-zero only on the main diagonal and a relatively small
number of sub-diagonals, each controller uses information only from
a limited number of neighboring subsystems. We search for structured
controllers that minimize the �� norm and find a set of coupled alge-
braic matrix equations that characterize necessary conditions for the
optimality.

The unstructured output feedback problem has been studied exten-
sively since the original work of Levine and Athans [14]. Many com-
putational methods have been proposed and, in general, they fall into
two categories: i) the general-purpose minimization methods, which in-
clude Newton’s method [15] and quasi-Newton method [16]; and ii) the
special-purpose iterative methods [17], [18]. The advent of linear ma-
trix inequality (LMI) has sparked renewed interest in fixed-order output
feedback design [19]–[21]. Recently, nonsmooth optimization methods
have been successfully employed for the design of the fixed-order ��
and�� controllers [22], [23]. HIFOO, a Matlab package for fixed-order
controller design, provides an effective means for solving many bench-
mark problems [24], [25].

In this note we employ the augmented Lagrangian method to design
structured optimal state feedback gains. This approach does not require
knowledge of a stabilizing structured gain to initialize the algorithm. A
sequence of unstructured problems is instead minimized and the re-
sulting minimizers converge to the optimal structured gain. We note
that the augmented Lagrangian method was previously used to design
decentralized dynamic controllers [26] and fixed-order�� controllers
[27], [28]. In contrast to these papers, we utilize structure of the neces-
sary conditions for optimality of the augmented Lagrangian to develop
an alternating descent method to determine the structured optimal gain.
Furthermore, we use sensitivity interpretation of the Lagrange multi-
plier to identify favorable architectures for performance improvement.

Our presentation is organized as follows. In Section II, we formu-
late the structured optimal state feedback problem, introduce the aug-
mented Lagrangian approach, and demonstrate how sensitivity inter-
pretation of Lagrange multiplier can be utilized to identify favorable
sparsity patterns for performance improvement. In Section III, we de-
velop an alternating descent method for the minimization of the aug-
mented Lagrangian. In Section IV, we illustrate the effectiveness of the
proposed approach via two examples. We summarize our developments
and comment on future directions in Section V.

II. PROBLEM FORMULATION AND AUGMENTED

LAGRANGIAN METHOD

Let a linear time-invariant system be given by its state-space repre-
sentation

�� ������ ���� ��

� �
	����


����
(1)

where � is the state vector, � is the disturbance, � is the control input,
and � is the performance output. All matrices are of appropriate di-
mensions, and 	��� and 
��� denote the square-roots of the state and
control performance weights. We consider the structured state feed-
back design problem

� � ���

where matrix � is subject to structural constraints that dictate the zero
entries of � . For a mass-spring system in Fig. 1, if the controller acting

Fig. 1. Mass-spring system on a line.

on the �th mass has access to displacement and velocity of the �th mass
and displacements of the two neighboring masses, then the feedback
gain can be partitioned into � � ��� �� � where �� is a tridiagonal
matrix and �� is a diagonal matrix.

For systems defined on general graphs the feedback matrix sparsity
patterns can be more complex. Let the subspace � encapsulate these
structural constraints and let us assume that there exists a non-empty
set of stabilizing � that belongs to � . Upon closing the loop, we have

�� ������� ����� ��

� �
	���

�
����
�� � � � 


Our objective is to find � � � that minimizes the �� norm of the
transfer function from � to �. This structured optimal control problem
can be formulated as

�	
	�	�� ��� � � 
���� �
�
�

�

�

����� � � �
�

�	� �
�

� � ����� � �� ����

������
 
� � � �
 (2)

For stabilizing � , the integral in (2) is bounded and it can be evaluated
by solving the Lyapunov equation

������ ��� � � ������ � � � 	� �
�

� (3)

thereby yielding ��� � � 
���� ���
� � �� ����.

The closed-loop �� norm of a stabilizable and detectable system in-
creases to infinity as the least stable eigenvalue of ��� �� � � ���

goes towards the imaginary axis. For marginally stable and unstable
systems, we define the �� norm to be infinity, which is consistent with
the integral in the definition of the�� norm (2). Furthermore, ��� � is a
smooth function of � , since it is a product of the exponential and poly-
nomial functions of the feedback gain. Therefore, the closed-loop ��

norm is a smooth function that increases to infinity as one approaches
the boundary of the set of stabilizing feedback gains. However, in gen-
eral, the �� norm of the closed-loop system is not convex in the feed-
back gain [29], that is, ��� � is not a convex function of � . Moreover,
the set of all stabilizing feedback gains is not a convex set. On the other
hand, � defines a linear subspace and thus � � � is a linear constraint
on the feedback gain.

If a stabilizing� � � is known, descent algorithms can be employed
to determine a local minimum of (2). However, finding a structured sta-
bilizing gain is in general a challenging problem. To alleviate this dif-
ficulty, we employ the augmented Lagrangian method in Section II-A.
We then provide the sensitivity interpretation of the Lagrange multi-
plier in Section II-B and introduce an alternating method for the mini-
mization of the augmented Lagrangian in Section III.

A. Augmented Lagrangian Method

The augmented Lagrangian method minimizes a sequence of un-
structured problems such that the minimizers of the unstructured prob-
lems converge to the minimizer of (2). Therefore, the augmented La-
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grangian method does not require a stabilizing structured feedback gain
to initialize the optimization algorithm.

We begin by providing an algebraic characterization of the structural
constraint � � � . Let �� be the structural identity of the subspace �
with its ��th entry defined as

��� ��� �
�� if ��� is a free variable;
�� if ��� � � is required.

If ��� �� � � �� denotes the structural identity of the complementary
subspace ��, where � is the matrix with all its entries equal to one, then

� � � � � � �� � � � � � ��� � �

where � denotes the entry-wise multiplication of matrices. Therefore,
the structured �� optimal control problem (2) can be rewritten as

��	���
� ��� 
 � ����� �
�
� 	 �� 
��

������� �� � � ��� � � (SH2)

where 	 �� 
 is the solution of (3).
The Lagrangian function for (SH2) is given by

���� 
 
 � ��� 
 � ����� 

� �� � ���
 �

From Lagrange duality theory [30]–[32], it follows that there exists
a unique Lagrange multiplier 
 � � �� such that the minimizer of
���� 
 �
with respect to� is a local minimum of (SH2). The Lagrange
dual approach minimizes ���� 
 
 with respect to unstructured � for
fixed 
 (the estimate of 
 �), and then updates 
 such that it converges
to the Lagrange multiplier 
 �. Consequently, as 
 converges to 
 �,
the minimizer of���� 
 
 with respect to� converges to the minimizer
of (SH2). This Lagrange dual approach is most powerful for convex
problems [32]; for nonconvex problems, it relies on local convexity
assumptions [31] that may not be satisfied in problem (SH2).

In what follows, a quadratic term is introduced to locally convexify
the Lagrangian [30], [31] yielding the augmented Lagrangian for (SH2)

����� 
 
 � ��� 
 � ����� 

� �� � ���
 �

�

�
�� � ����

�

where the penalty weight � is a positive scalar and � � � is the Frobe-
nius norm. Starting with an initial estimate of the Lagrange multiplier,
e.g., 
 � � �, the augmented Lagrangian method iterates between min-
imizing ����� 


�
 with respect to unstructured � (for fixed 
 �) and
updating



��� � 


� � � �� � � ���


where � � is the minimizer of ����� 

�
. Note that, by construction,


 � belongs to the complementary subspace ��, that is



� � ��� � 


�
�

It can be shown [30], [31] that the sequence 	
 �
 converges to the
Lagrange multiplier 
 �, and consequently, the sequence of the mini-
mizers 	� �
 converges to the structured optimal feedback gain � �.

Augmented Lagrangian method for (SH2):

Let 
 � � � and �� 
 �, for � � �� �� � � � � do
(1) for fixed 
 �, minimize ����� 


�
 with respect to
unstructured � (see Section III);

(2) update 
 ��� � 
 � � �� �� � � ���
;
(3) update ���� � � �� with � 
 �;

until: the stopping criterion �� � � ���� � � is reached.

The convergence rate of the augmented Lagrangian method depends
heavily on the penalty weight �. In general, large � results in fast con-
vergence rate. However, large values of � may introduce computational
difficulty in minimizing the augmented Lagrangian. This is because the
condition number of the Hessian matrix ������� 
 
 becomes larger
as � increases. It is thus recommended [30] to increase the penalty
weight gradually until it reaches a certain threshold value � . Our nu-
merical experiments suggest that �� � � �� � �, � � � �� �� �, and � �
� ���� ��� � work well in practice. Additional guidelines for choosing
these parameters can be found in [30, Section 4.2].

B. Sensitivity Interpretation

It is a standard fact that the Lagrange multiplier provides useful in-
formation about the sensitivity of the optimal value with respect to the
perturbations of the constraints [30]–[32]. In particular, for the struc-
tured design problem, the Lagrange multiplier indicates how sensitive
the optimal �� norm is with respect to the change of the structural
constraints. We use this sensitivity interpretation to identify favorable
sparsity patterns for improving �� performance.

Let ��� �
 denote the standard inner product of matrices ������
 �
����� ���

� ��
. It is readily verified that �� � ����
� � �� � ��� � � �

���
 � �� � ��� � � 
 and �
� � � ���
 � �
 � ��� � � 
 � �
� � 
 where
we used the fact that 
 ���� � 
 . Thus the augmented Lagrangian can
be rewritten as

����� 
 
 � ��� 
 � �
� � 
�
�

�
�� � ��� � � 


and its gradient with respect to � is given by

������ 
 
 � ���� 
 � 
 � � �� � ���
�

Since the minimizer � � of����� 

�
 satisfies�����

�� 
 �
 � � and
� � � ��� � �, we have

���� �
 � 

� � ��

Let the structural constraints 	��� � �, ��� �
 � ��
 be relaxed to
	���� � � �, ��� �
 � ��
 with � 
 �, and let �� be the minimizer of

��	���
� ��� 


������� �� 	���� � � �� ��� �
 � ��
� (RH2)

Since the constraint set in (RH2) contains the constraint set in (SH2),
�� �� 
 is smaller than or equal to ��� �


�� �� 
 �� ��� � � �� �
 � ��� �
 (4)

where �� � denotes the difference between �� and � �. Now, the Taylor
series expansion of ��� � � �� �
 around � � in conjunction with (4)
yields

��� �
� ��� � � �� �
 � � ����� �
� �� �
���� �� ���
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 �
� �� �
���� �� ���
 � ��

Furthermore

�
 �
� �� �
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where we have used the fact that � �
�� � � for ��� �� � � and � �� �

�� � � �

for ��� �� � ��. Thus, up to the first order in �� �, we have

��� ��� ��� � � �� �� � �

�������

�� �
�� ��

Note that larger �� �
�� � indicates larger decrease in the 	� norm if the

corresponding constraint ��� � � is relaxed. This sensitivity interpre-
tation can be utilized to identify favorable controller architectures; see
Section IV-B for an illustrative example.

III. ALTERNATING METHOD FOR MINIMIZATION

OF AUGMENTED LAGRANGIAN

In this section, we develop an alternating iterative method for
minimization of the augmented Lagrangian. This method is motivated
by the structure encountered in the necessary conditions for optimality
(NC-L), (NC-P), and (NC-F) given below. We note that Newton’s
method, which is well-suited for dealing with ill-conditioning in ��

for large values of 
 [30], can also be employed to minimize the
augmented Lagrangian.

Using standard techniques [14], [16], we obtain the expression for
the gradient of ���� �1

����� � ����� � � � � 
 �� � ����

� ���� �

�
� � ��� � � 
 �� � �����

Here,� and � are the controllability and observability Gramians of the
closed-loop system

���
�� ��� ����
�� �� � �
�

�
� � (NC-L)

���
�� ��� � � ���
�� � � � ��� �
�
�� ��

(NC-P)

and the necessary condition for optimality of ���� � is given by

���� �

�
� � ��� � � 
 �� � ���� � �� (NC-F)

Solving the system of equations (NC-L), (NC-P), and (NC-F) is
a non-trivial task. In the absence of structural constraints, setting
���� � � ���� � 
�

� � �� � � yields the optimal unstructured
feedback gain

�� � �
��



�
� �

where the pair ���
���
�� is assumed to be controllable and there-
fore � is invertible. Here, � is the positive definite solution of the al-
gebraic Riccati equation obtained by substituting �� in (NC-P)

�
�
� � ����� �
��

��



�
� � � ��

Starting with � � ��, we can solve Lyapunov equations (NC-L)
and (NC-P), and then solve (NC-F) to obtain a new feedback gain �� .
We can thus alternate between solving (NC-L), (NC-P) and solving
(NC-F).

In Proposition 1, we show that the difference between two consec-
utive steps �� � � is a descent direction of ���� �. Therefore, we can
employ the Armijo rule to choose the step-size � in � ��� �� �� � such
that the alternating method converges to a stationary point of ���� �.
By virtue of the fact that the augmented Lagrangian ���� � is locally
convex [30], [31], the stationary point indeed provides a local minimum
of ���� �. We then update � and 
 in the augmented Lagrangian (see

1Since � is fixed in minimizing � ��� � �, we will use � �� � to denote the
augmented Lagrangian.

Section II-A for details), and use the minimizer of ���� � to initialize
another round of the alternating descent iterations. As � converges
to � �, the minimizer of ���� � converges to � �. Therefore, the aug-
mented Lagrangian method traces a solution path (parameterized by �
and 
) between the unstructured optimal gain �� and the structured op-
timal gain � �. Here, we assume that �� is contained in a connected set
of stabilizing feedback gains that has a non-empty intersection with the
subspace � .

We summarize this approach in the following algorithm.

Alternating method to minimize augmented Lagrangian
����� �

��

For � � � �, start with the optimal unstructured feedback gain
��;
For � � with � 	 	, start with the minimizer of ����� �

����;
for � � �� 	� 
 
 
, do

(1) solve Lyapunov equations (NC-L) and (NC-P) with
� � �� to obtain �� and ��;

(2) solve linear equation (NC-F) with � � �� and � � ��

to obtain ���;
(3) update ���� � ������ ������� where �� is determined

by Armijo rule;
until: The stopping criterion 
�������
 � � is reached.
Armijo rule [30, Section 1.2] for step-size ��:
Let �� � 	, repeat �� � ���
until

��������� ��� � ����������� � � �� ��������� �������

where �� � � ��� 	�, e.g., � � ��� and � � ���.

The descent property of ��� � �� established in Proposition 1 ,
continuity of ��� with respect to �� , and the step-size selection using
the Armijo rule guarantee the convergence of the alternating method
[30]. Furthermore, for �� sufficiently close to the local minimum we
have established the linear convergence rate of the alternating method;
due to page limitations these convergence rate results will be reported
elsewhere.

We conclude this section by establishing the descent property of the
difference between two consecutive steps in the alternating method,
�� � � .

Proposition 1: The difference between two consecutive steps,
�� 
� �� � � , is a descent direction of the augmented Lagrangian,
������ �� �� � � �. Moreover, ������ �� �� � � � if and only if � is a
stationary point of ���� �, that is, ����� � � �.

Proof: Substituting �� � � � �� in (NC-F) yields

�� ���� 
 � �� � ���� ������ � � �� (5)

Since � and � are positive definite matrices, we have

������ �� �� � � �� �� ���� �� � � 
 � �� � ��� � �� � ���� � �� (6)

We next show that the equality is achieved if and only if � is a sta-
tionary point, that is

������ �� �� � � �
 ����� � � ��

The necessity is immediate and the sufficiency follows from two facts:
(i) equality in (6) implies �� � �, that is

�� �� ���� �� � � 
 � �� � ��� � �� � ���� � �� �� � �
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TABLE I
MASS-SPRING SYSTEM WITH � � ��� ������: � DETERMINES THE

SPATIAL SPREAD OF THE DISTRIBUTED CONTROLLER, ALT#
IS THE NUMBER OF ALTERNATING STEPS

and (ii) setting �� � � in (5) yields ����� � � �. This completes the
proof.

Remark: If � is a diagonal matrix, we can write the �th row of (5)
as

��� ������ ��	
� ���� �� ������ �� � �

where ���� denotes the �th row of a matrix and �	
� ���� �� is a diagonal
matrix with ��� � on its main diagonal. Therefore each row of �� can be
computed independently.

IV. EXAMPLES

We next demonstrate the utility of the augmented Lagrangian ap-
proach in the design of optimal structured controllers. The mass-spring
system in Section IV-A illustrates the efficiency of the augmented La-
grangian method, and the vehicle formation example in Section IV-B
illustrates the effectiveness of the Lagrange multiplier in identifying
favorable controller architectures for improving �� performance.

A. Mass-Spring System

We consider a mass-spring system with unit masses and unit spring
constants shown in Fig. 1. If restoring forces are considered as linear
functions of displacements, the state-space representation of this
system is given by (1) with

� �
	 �


 	
� �� � �� �

	

�

where � and 	 are 
�
 identity and zero matrices, and 
 is an 
�


symmetric Toeplitz matrix with the first row given by ��� 
 � � � � � � �
�. The state and control weights are assigned to be � � � and � �


�� .
We consider a situation in which the control applied to the �th mass

has access to displacement and velocity of the �th mass, and displace-
ments of � neighboring masses on the left and � neighboring masses
on the right. Thus, �� � ��� � � where �� is a banded matrix with
ones on � upper and � lower sub-diagonals. For 
 � 
�� masses with
� � �� 
� �� �, the results are summarized in Table I. Here, the stopping
criterion for the augmented Lagrangian method is 	� 
 ���	 � 
���,
and the stopping criterion for the alternating method is 	����� �	 �

���.

We note that as the spatial spread � of the distributed controller in-
creases (i) the improvement of ��� �� becomes less significant; and (ii)
���� 
 ��� � ��� ��, i.e., near optimal performance can be achieved
by the truncated optimal unstructured controller��
�� . These observa-
tions are consistent with the spatially decaying property of the optimal
unstructured controller on the information from neighboring subsys-
tems [1], [10].

B. Formation of Vehicles

We consider a formation of nine vehicles in a plane. The control
objective is to keep constant distances between neighboring vehicles.

Fig. 2. (a) Block diagonal feedback gain � where each block signifies that the
two control inputs acting on each vehicle only have access to the four states
of that vehicle; (b) Lagrange multiplier � with entries separated into groups
small (�) and large ( ) according to (7).

Modeling these independently actuated vehicles as double-integrators,
in both horizontal and vertical directions, yields the state-space repre-
sentation (1) with

� ��	
������ �� � �	
������� �� � �	
�������

�� �
	� ��

	� 	�

� ��� � ��� �
	�

��
� � � 
� � � � � �

where �� and 	� are 2� 2 identity and zero matrices. The control
weight � is set to identity, and the state weight � is obtained by penal-
izing both the absolute and the relative position errors

�
�
���

�

���

�
�

����
�

���
�
���

����������
�����������

��

where ��� and ��� are the absolute position errors of the �th vehicle in
the horizontal and vertical directions, respectively, and set �� deter-
mines neighbors of the �th vehicle.

The decentralized control architecture with no communication be-
tween vehicles specifies the block diagonal structure 
�; see Fig. 2(a).
We solve (SH2) for � � 
� and obtain the Lagrange multiplier � � �

�� ; see Fig. 2(b). Let

�
�
�� �� 	� �����

��
��� if � � �� �
�� � � ����	 ,

�
���� if �� �
�� � � ����	

(7)

where �	 is the maximum absolute value of the entries of � �. We
solve (SH2) for � � 

 or � � 
�, where 

 and 
� are the subspaces
obtained from removing the constraints ���� � �� corresponding to
�� �

��� in groups small and large, respectively. We also consider the
performance of the optimal controller in the unstructured subspace 
�
with no constraints on � .
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Fig. 3. Localized controller architecture in which each vehicle communicates
only with its neighbors. The arrow directed from node � to node � indicates
that node � is sending information to node � . Priority order of communication
channels is determined by the absolute values of � , ranging from the highest
to the lowest: brown, red, orange, green, blue, purple, and black.

TABLE II
PERFORMANCE IMPROVEMENT, � � �� � � ��� , RELATIVE TO THE

OPTIMAL � NORM � � ������� WITH DECENTRALIZED STRUCTURE � .
HERE, 	 IS THE NUMBER OF EXTRA VARIABLES IN � , � , AND � COMPARED

WITH � , AND ��	 IS THE PERFORMANCE IMPROVEMENT PER VARIABLE

Table II shows the influence of the number of optimization variables
on the performance improvement. Note that �� has the largest improve-
ment per variable among all three structures ��, ��, and ��. As illus-
trated in Fig. 3, �� determines a localized communication architecture
in which each vehicle communicates only with its neighbors. There-
fore, the Lagrange multiplier � � identifies distributed controller with
nearest neighbor interactions as the favorable controller architecture.
This is in agreement with [10] where it was shown that optimal un-
structured controllers for systems on general graphs possess spatially
decaying property; similar result was proved earlier for spatially in-
variant systems [1].

V. CONCLUSION

In this note, we consider the design of structured optimal state feed-
back gains for interconnected systems. We employ the augmented La-
grangian method and utilize the sensitivity interpretation of the La-
grange multiplier to identify favorable communication architectures for
structured optimal design. The necessary conditions for optimality of
the augmented Lagrangian are given by coupled matrix equations. Mo-
tivated by the structure of these equations, we develop an alternating
descent method for obtaining the optimal feedback gain. The proposed
approach does not require a stabilizing structured controller to initialize
the iterative procedure and its utility is illustrated by two examples.

Although we focus on structural equality constraints, we note that
it is also possible to incorporate inequality constraints, e.g., ���� � �
��� , in the augmented Lagrangian method [30], [31]. This extension
is expected to be useful in applications where controller saturations or
limited communication budgets are incorporated in the design.

In our ongoing efforts, we are applying the tools developed here
to the control of vehicular formations [33], [34], and to the design of
consensus-type algorithms for optimal performance over general con-
nected networks. These problems have received considerable attention
in recent years but a systematic procedure for the design of optimal
localized controllers is yet to be developed. The algorithms developed
here will also be useful in analyzing the scaling of different perfor-
mance measures with respect to the network size [34]. Such analysis
will provide insight into the fundamental limitations of the performance
achievable using localized control strategies with relative information
exchange in systems with arbitrary communication topologies.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers and the asso-
ciate editor for their valuable comments.

REFERENCES

[1] B. Bamieh, F. Paganini, and M. A. Dahleh, “Distributed control of spa-
tially invariant systems,” IEEE Trans. Autom. Control, vol. 47, no. 7,
pp. 1091–1107, Jul. 2002.

[2] G. A. de Castro and F. Paganini, “Convex synthesis of localized
controllers for spatially invariant system,” Automatica, vol. 38, pp.
445–456, 2002.

[3] P. G. Voulgaris, G. Bianchini, and B. Bamieh, “Optimal� controllers
for spatially invariant systems with delayed communication require-
ments,” Syst. Control Lett., vol. 50, pp. 347–361, 2003.

[4] R. D’Andrea and G. E. Dullerud, “Distributed control design for spa-
tially interconnected systems,” IEEE Trans. Autom. Control, vol. 48,
no. 9, pp. 1478–1495, Sep. 2003.

[5] C. Langbort, R. S. Chandra, and R. D’Andrea, “Distributed control de-
sign for systems interconnected over an arbitrary graph,” IEEE Trans.
Autom. Control, vol. 49, no. 9, pp. 1502–1519, Sep. 2004.

[6] V. Gupta, B. Hassibi, and R. M. Murray, “On the synthesis of con-
trol laws for a network of autonomous agents,” in Proc. Amer. Control
Conf., 2004, pp. 4927–4932.

[7] B. Bamieh and P. G. Voulgaris, “A convex characterization of dis-
tributed control problems in spatially invariant systems with commu-
nication constraints,” Syst. Control Lett., vol. 54, pp. 575–583, 2005.

[8] M. Rotkowitz and S. Lall, “A characterization of convex problems in
decentralized control,” IEEE Trans. Autom. Control, vol. 51, no. 2, pp.
274–286, Feb. 2006.

[9] A. Rantzer, “A separation principle for distributed control,” in Proc.
45th IEEE Conf. Decision Control, 2006, pp. 3609–3613.

[10] N. Motee and A. Jadbabaie, “Optimal control of spatially distributed
systems,” IEEE Trans. Autom. Control, vol. 53, no. 7, pp. 1616–1629,
Jul. 2008.

[11] F. Borrelli and T. Keviczky, “Distributed LQR design for identical dy-
namically decoupled systems,” IEEE Trans. Autom. Control, vol. 53,
no. 8, pp. 1901–1912, Aug. 2008.
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Switched Affine Systems Using Sampled-Data Controllers:
Robust and Guaranteed Stabilization

Pascal Hauroigné, Pierre Riedinger, and Claude Iung

Abstract—The problem of robust and guaranteed stabilization is
addressed for switched affine systems using sampled state feedback
controllers. Based on the existence of a control Lyapunov function for a
relaxed system, we propose three sampled-data controls. Global attracting
sets, computed by solving a sequence of optimization problems, guarantee
practical and global asymptotic stabilization for the whole system trajecto-
ries. In addition, robust margins with respect to parameters uncertainties
and non uniform sampling are provided using input-to-state stability.
Finally, a buck-boost converter is considered to illustrate the effectiveness
of the proposed approaches.

Index Terms—Input-to-state stability, robust control, stabilization of hy-
brid systems, switched systems.

I. INTRODUCTION

Most of the results related to the stabilization of switched systems
deal with subsystems sharing zero as common equilibrium. In this tech-
nical note, we treat the case of affine switched systems for which gen-
erally no common equilibrium can be defined. In this context, the re-
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ferred targets, named operating points, are defined as the equilibria of a
relaxed system – obtained by relaxing the control domain to its convex
hull. The control goal is then to steer, in average value, the state vari-
ables to these targets. Advanced control methods based on Lyapunov
functions [1], sliding modes [2], optimal [3], [4] and predictive con-
trols [5], [6] have been extensively proposed. In [7], in the case of
pulsewidth modulated systems with no common equilibrium, a sys-
tematic method for stability analysis is provided. Sufficient conditions
for global and local exponential stability are stated in terms of matrix
inequalities. Nevertheless, there are few results concerning the estima-
tion of the attracting set. In [8] and into a discrete time framework, a
positively invariant set [9] formed by the union of bounded ellipsoids is
determined and used in a predictive control algorithm to steer the state
inside. However, the method uses a LMI formulation to compute these
ellipsoids which introduces some conservatism in the result. Indeed,
LMIs imply that the switched system possesses a switching sequence
� of a prescribed length for which a property of uniform stability w.r.t.
the initial condition is satisfied. So, the computed invariants are not par-
ticularly tight around the target.

In this technical note, assuming that a continuous time Control Lya-
punov Function (CLF) is known for a relaxed system, robust stability
for different sampled switched strategies is investigated. Precisely, we
prove that tight positive invariant sets around the targets can be obtained
by solving optimization problems. The global and practical asymptotic
stabilization is thus guaranteed. The robustness aspects of the proposed
sampled switched strategies in case of non uniform sampling and pa-
rameter uncertainties are also studied and discussed.

The technical note is organized as follows. The system description is
given and the operating points are defined in Section II. In Section III,
we propose three sampled-data controls for the switched system. In
Section IV, a set of optimization problems is also formulated and we
prove that the solutions allow to define global attracting sets (see [9],
for definition) for the sampled switched affine system. An extension
of those results in the case of parameter uncertainties and non-uni-
form sampling is given in Section V. The computational aspects are
addressed in Section VI. A buck-boost converter is used in Section VII
as illustration.

Notation
� denotes the set of strictly positive natural numbers and ��, the

set �� � � � � ��.

II. SYSTEM DESCRIPTION

In this technical note, the class of affine systems is considered

����� � ������ ��� �

�

���

�
����������� ���� (1)

where �����, 	 � �
 � � � 
� are component values of the control � and
���� � � represents the state value at time �. �� and �� are real
matrices of appropriate dimensions. In the sequel, from (1), two sys-
tems are distinguished by their control set: Switched System (SS) when
���� � � � ��
 ��� and Relaxed System (RS) when ���� � 	
��� �
��
 ��� where 	
��� stands for the convex hull.

(SS) belongs to the class of nonsmooth systems for which the notion
of solution can be properly defined and generalized in the sense given
by Fillipov [10]. The link between the solutions of (SS) and (RS) is
established by a density theorem in infinite time in ([11], Theorem 1).
This theorem guarantees that switching laws � � 
����
���
 ��
(where 
� denotes the Banach space of all essentially bounded mea-
surable functions) exist such that the trajectory of (RS) can be ap-
proached as close as desired by the one of (SS). For this reason, the
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